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ABSTRACT

We consider a network of N nonlinearly coupled neuron-like elements
subject to Langevin noise and a weak periodic modulation. Through the adi-
abatic elimination proceedure, the dynamics of a single neuron is obtained
from the coupled stochastic differential equations describing the network.
The bifurcation properties of this "reduced neuron' model are discussed,
together with cooperative stochastic effects (e.g. stochastic resonance) that
result from the presence of the modulation.

Recently, there has been an upsurge of interest in single or few-neuron nonlinear
dynamics [1-41. However, the precise relationship between the many-neuron connected
model and a single effective neuron dynamics has not been examined in detail. Such a
reduced neuron dynamics has been derived recently [SJ for a network of N symmetrically
interconnected neuron-like elements embodied, for example in the 'connectionist" models
of Hopfield [6,71 or Sharnma [81 (the latter corresponding to a mammalian auditory net-
work). Through an adiabatic elimination procedure, the dynamics (in closed form) of a sin-
gle neuron has been obtained from the system of coupled differential equations describing
the N-neuron problem. The problem has been treated both deterministically and stochasti-
cally (through the inclusion of additive and multiplicative noise terms). It is important to
point out that the work of ref [5] does not include a priori a self-coupling term; rather, that
theory results in an explicit form of the self-coupling term, in terms of the parameters of
the remaining neurons in the network i.e., the network dynamics is reduced to a closed
equation describing -a single neural element with nonlinearity determined by the parameters
describing the remaining neurons in the network. This 'reduced' or 'effective' neuron
model is expected to reproduce some of the gross features of biological neurons. Multiplica-
tive noise effects in the model have been discussed, in greater detail, in 19]. The fact that
simple single neuron models, such as the model to be considered in this work, can indeed
reproduce several features observed in biological experiments has been demonstrated 1101
through the construction of inter-spike-interval histograms (ISIlls) using a Schmidt trigger
to model the neuron. The results of this simple model are in very good qualitative agree-
ment with data obtained in two different experiment,;, on two different animals.

In this work, we extend the work of [5] to include, a priori, self-coupling terms (such
terms are almost always present in electronic neural networks, for example) as well ats a
weak low-frequency periodic modulation. Thus, we consider a general network of neuron-
like elements described by the dynmunics,
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Here, ui represents the membrane potential of the s• neuron with input capacitance t.',
and a leakage current due to the trans-membrane resistance R,. F,(t) is taken to be Cai's-
sian delta-correlated noise having zero mean and variance a: (we a-sume that the noise
sources for the different neurons are uncorrelated, throughout this work) and the dot
denotes time-differentiation. It is important to note that an equation of the form (1)
describes, in general, N nonlinearly coupled bistable oscillators. This model is also the con-
tinuum version of the Hopfield model J71 if the coupling coefficients J,, are computed using
the Hebb rule. We do not assume such a rule for computing the coefficients J,,', nor do we
assume that the matrix J is symmetric. Our system (1) therefore is closer to neurophysio-
logical models than the Hopfield model. We now assume that at least two distinct time-
scales exist in the dynamics described by (1). Specifically we assume that

R, <<R, (I,> 1) . (2)

This is tantamount to assuming that we may treat the neuron described by the membrane
potential u, as a 'slow" neuron interacting with a 'bath' of N-- I fast- neurons that are in
equilibrium. We may then adiabatically eliminate the bath variables from (1) and write
down an equation for the variable u, in terms of the bath variables. The proceedure for
',0ing this has been described in [51 and is not repeated here. Specifically, an N-body
Fokker Planck equation is constructed from (1). Using Haken's slaving principle 111] the
N-body probability density function is factored into a density function g(uj) describing the
"slow' variable ul and a conditional density function embodying the remaining variables.
This permits the separation of the Fokker Planck equation into fast and slow components.
The Fokker Planck equation for the bath variables is integrated, in the steady state, by
invoking a local equilibrium assumption (this is necessary since detailed balance is usually
not satisfied in two or more dimensions). Ultimately, we arrive at a Fokker Planck equation
for u, whence a stochastic differential equation for the variable u1 (this variable now
characterizes the "effective' or 'reduced- neuron) may be written down by inspection. This
equation is,

u, = - au, +fltanhu, +Ss~in t + V/• -- (t), (3)

where,

S= (R ,C ,)-'; = C `' J 1,+ - R ,J, J,, 1  - ,j2R ;

5=-'' q I+G-1 E RiJ,, ;_ý G K I- E J,,R, ; a2, - a/C ,. (4)
C, ,•i 20• ,•,i

In carrying out the proceedure leading to (3) we have assumed further that the modulation
frequency is smaller than the Krarners frequency of the unmodulated system. This "adia-
batic assumption' allows us to treat the modulation as being approximately cnstant in our
solution of the Fokker Planck equation. This assumption is also a cornerstone of the adia-
batic theory of stochastic resonance 1121 on which our subsequent results are based.
Further, we assume tbnt

a R, << 2c, (1*# 1 ). (5)

This assumption (quantified in [51) guarantees the convergence of the steepest descent tech-
niques used to evaluate, the coefficient Ri in (3). Note also the ,absence of terms involving
coupling between pairs of "fast' neurons; these terms are 0(R, [?,) (%,) > 1) or higher and
can be neglected. It is worth pointing out that the adiabatic elimination proceedure, based
on the inequality (2) may actually have some basis in neurophysiology, e.g., when one con-
siders the interaction of a single neuron with a "dendritic bath'_



-3-

A detailed analysis of the full dynamics described by (3) is beyond the scope of this
Letter and will be presented elsewhere. In the following, therefore, we focus our attention
on a single 'slow' neuron u, coupled to a 'fast- neuron ul as a representative example
which we use to describe the cooperative effects that arise as a result of their interaction.
Since neurons are (inherently) bistable elements, it is instructive tw study the bifurcation
properties of this system which, in the absence of the noise and modulation terms, may be
described by the potential function,

2

For positive a and 0, the potential is bimodal if /l/a > 1 with the minima located (for large

f//a) at c ± - tanh ý- and an elliptic point at u I - 0. It is instructive to consider the

effects of the fast neuron dynamics on the transition to bimrodality in the potential. To this
end, we plot, in figure one, the ratio fi/a as a function of the resistance R ,, for different
values of the variance a' of the noise source in the fast neuron. In this figure, we take
J,,=1 and we have chosen a to guarantee that, in the absence of the second neuron
(J, 2 =0), the potential corresponding to the neuron u, is bimodal. Since the ratio f//a also
determines the barrier height (for a given a), one observes that dramatically different
effects are obtained depending on the sign of the product J3 2 J2 t in (4). These effects are
also readily observable in equations (4). For J,2 = 1 = J21, the coupling to the 'fast' neuron
is seen to increase the ratio 6i/a upto a maximum value, occurring at

R2= -, after which it decreases (note that the quantity inside theJ22

square root must be positive in order to get an extremum within the constraints inherent in
the inequality (5)); the opposite effect occurs in the J21 - I case. As the noise al
increases, the deviation from the Jd2 =0 case becomes less pronounced. At R.-0 and
2C 2/a o, the curves for J 21=1 and J 21=-1 intersect, yielding the J•v 0 result (,/9a 7 J ,R,)
Beyond this intersection, the inequality (5) is violated and we do not expect the theory to
yield accurate results.

We now consider the effects of the deterministic modulation. Specifically, we are
interested in the phenomenon of stochastic resonance wherein a small amount of noise can
introduce correlated switching events in the effective potential (6). An adiabatic theory,
valid for very low frequency w and weak amplitude q (such that there is no switching in "he
absence of noise) has been developed by McNamara and Wiesenfeld [121. The central rc-,ult
of this theory is that if one computes the signal-to-noise-ratio (SNR) of a nonlinear .,, stem
of the form (3) as a function of the noise variance, then the SNR passes throup'. a max-
imum at a noise variance approximately equal to the potential barrier height Stochastic
resonance has been investigated [13] for a single (isolated) oscillator of the fo'm (3), with
arbitrary a and fi (see also the recent review [14)). In the current context, we define the
deterministic switching threshold as the critical value 6, of the scaled modulation amplitude
6, above which one would obtain deterministic switching in the a' -- 0 ? case. This critical
value can be easily found to be given by 6, 4 , fitanhu, where

t, -In {. 7+ Vr-a--•- - iJ and fl = (/),0. Then, in order to satifactorily explain the sto-

chastic resonance using adabatic theory we must ensure tl-L 6<. , ,and w <w , the Kra-
mers rate for the unmodulated system (the latter conditio,, is also necessary in the deriva-
tion of (3)). Figure two shows the characteristic signal-to-noise-ratio (SNR) curve
(obtained via numerical integration of (3)) as a fur'-:tion of -,'. The curve is peaked at
a2 = u-U, the barrier height determined from (6). The effect of introducing noise of varying
amountrs in the fast neuron dynamics is also eluc dated in this figure In figure three we plot
the peak SNR (computed from the the adiabatic theory 112,131 for C V,), normalized to
its value in the J,12-,O case (no coupling to the bath neuron). We consider the J, I

case. It is evident that the efficiency of the st(xlha-sti resonance l)r, -ess is enhanced (for



low values of a) by the coupling to tile bat!, neuron, with the moist pronomunced improvt-
ment occurring for low noise strengths in the fast nearon. Similar effects have been
observed recently in a mean field m ldel of globally coupled bIstable oscillators 1151. The
increase in the SNR with R2 (keeping R, fixed) is seen to correlate with the decrease of the
ratio fl/a (and the accompanying decrease in the potential barier height) observed in fig-
ure one for J,, -1. Li fact one may show, within the framework of the adiabatic theory

L12,13) and for large 6/a, that an enhancement of the peak SNR such as observed in figure

2 (and in figure 3 below) is obtained if -P- -,, > 1, for a given t. Note however, that
q 2 oT

increasing a2 tends to decrease fl/a as well as the effective interaction 6. This explains the
degradation of the effect as a2 increases. The corresponding effect for the J,1  I case is very
small; this is readily understood by observing that the potential barrier height increases for
this case, as R 2 is increased from zero. Hence, at. enhancement in the SNR (as observed in
figure 2 for the J21=-1 case) does not occur within the range of values of RI that is allowed
by (2) and (5). In passing, we briefly point out that the case J,2  1 J2.1 is qualitatively
similar to the Jd,2 1= -J, case, insofar as the magnitude of the paramneter P is concerned;
however, the effective signal amplitude 9 is seen to be lowered in this case (compared Ut
the J, 2=1 case) so that the signal-to-noise ratio is also degraded. Similar arguments apply
to the J1 2 = -- 1 = J., case.

The analysis of the preceeding paragraph underscores the importance of the sign of
the interaction. This is also obvious from the definitions (3) wherein we observe that f3 (and
hence the potential barrier height) depends on the product J,J,, whereas the effective
modulation term 6 depends only on Ji, (the factor G` also plays a role but we do not con-
sider its effect in this Letter). Clearly, in order to achieve the best possible SNR the barrier
height should be decreased and the effective modulation increased (but not beyond the
threshold for deterministic switching) as a result of the coupling to the bath neurons; this is
best achieved by having (for the two-neuron case under consideration here) J, > 0 , J71 < 0.
In neurophysiological terms, we could argue that having a distribution of excitory and inhi-
bitory interactions provides superior performance to having all the couplings of one type
(the latter situation is also unlikely to occur in neurophysiology, although it could certainly
be realized in electronic analogs).

Finally, we consider the case J, 1 =0. For this case, the potential in the absence of any
coupling (J12=O) is parabolic. However, as apparent in figure four, the coupling to the fast
neuron can render the effective potential .(6) bimodal above a certain critical value of R,.02 1P
This critical value is given by R 2 c 2- [(Jl 2 J21 R + J-) 2 

-- V 12J2 1R~au Unlike

the preceeding case, however, this bimodality (which actually corresponds to a bifurcation
in the most probable value of u, [9,16]) only occurs for JlJ2 1 >0 within the constraints
imposed by (5). Further, large noise strengths cra2 tend to degrade this effect. Nonetheless,
it is apparent that one will observe a stochastic resonance effect in the presence of the cou-
pling to the fast neurons even though there is no such effect in the isolated (J,,=O) case.

The above work may be extended to larger networks. Clearly, as evidenced by the
structure of the factor G-1 in (4) as well as the nature of the terms occurring within the
summations, the magnitudes as well as the signs of the coefficients J,, are of paramount
importance in determining how the network performs. Note that, for a general network of
nonlinear oscillators the coefficients J,1 could take on any values, as long as the system
remains stable i.e., fl(>0 (if 0</B3< a, the potential (6) will be parabolic). However, to
maintain some contact with neural network theory, we have assumed IJ,,I I in all our
simulations. The calculations reported here have been extended to larger networks of the
form (1) In which the resistances R, and the variances cr(i > 1) are drawn from a uniforrm
random set subject to the condition (2) and (5). The results obtained are qualitatively sirni-
lar to those discussed here for the special case t '2, and will be presented in an up-oining
ptib'icati)n It is tantalizing to speculate that neurophysiological syslerni constantly adjust



the synaptic couplings J,, (which may depend, in general, on i vast array of internial
parameters) in response to the stimulus nid noise, such that the potential function that
characterizes the network (for our model, this would be the "reduced" or "effective" pot-en-
tial (6)) admits of more than one minimum. This leads, in turn, to nonlinear dynamnic
effects such as stochastic resonance, in which the noise actually enhances the flow of infor-
mation throught the system; this effect appears to improve as a result of the connections Ut
the "bath" neurons. As pointed out earlier, adjusting the internal paraneters such that
fl/ca> I also guarantees stability; in the neighbourhood of the minima of (6) one may write
f17] the long-time probability density function for ul in the form exp ýS where s is a gen-

eralized 'entropy' taking the form, S =,- )6u. S is a Liapounov function in the
2 du,

neighbourhood of the potential minima. If the work of this Letter could be generalized to
the point of solving the Fokker Planck equation corresponding to the fully coupled system
(1) in the steady state, the potential function would be an N-dimensional hypersurface. To
date there does not exist a technique for deriving such a potential for an N-dimensional
nonlinear stochastic system.

From the standpoint of this Letter it is also important to reiterate the beneficial
effects of coupling the neuron u, to the "fast" neuron U2 . The coupling clearly enhances the
information flow (measured by the SNR) to the output of the system and can, for not too
large noise variances a' provide signal processing capabilities that are outside the capabili-
ties of the original oscillator (J,,=O). The addition of noise to the deterministic dynamics
significantly enhances the signal processing characteristics of the network. This was pointed
out earlier by Buhmann and Schulten !18,191 who stated that noise...is an essential feature
of the information processing capabilities of the neural network and not a mere source of
disturbance better suppressed...'
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Figure Captions

1. Effective nonlinearity parameter 6l/a (computed from (4) for the two-neuron case) vs
R 2. (R 1,J 1 I,J2) --(10.0,1.0,1.0). Solid curves represent J•2=1.0= j21 with a2=0, 10.0,20.0
reading from the top curve downward. Dotted curves correspond to Jsub 12 1.0 JýI
with a = 0,10.0, 20.0 reading from the bottom curve upward.

2. Signal-to-noise ratio vs slow neuron noise variance a0,. Bottom curve: J, 2 = 0 (isolated
case); top curve: J 12 =1-0= - J21, R 2 =0.M,a2=0; middle curve: j 2 =1.0- J2,
R 2 =0.1,,2= 5.0. q =0.1=w; frequency resolution =0.001. Other parameters as in fig. 1.

3. Peak signal-to-noise-ratio vs. R 2 for J, 2 = 1.0=- J2 , and a'=0, 5.0,10.0,20.0 reading from
the top curve doownward. Other parameters as in fig. 2.

4. Effective nonlinearity parameter fl/a vs R 2. (R 1 , J11, Jn) - (10.0,0.0, 1.0). Solid curves
represent J12 =1.0=J 21 with a2= 0, 5.0, 10.0 reading from the top curve downward. Dotted
curves correspond to Jsub 12 = 1.0 = J2 with a2 = 0, 5.0, 10.0 reading from the bottom curve
upward.
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